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Abstract

What is the optimal penalty for errors in infant skill learning? Behavioral analyses

indicate that errors are frequent but trivial as infants acquire foundational skills. In

learning towalk, for example, falling is commonplacebut appears to incuronly anegligi-

ble penalty. Behavioral data, however, cannot revealwhether a lowpenalty for falling is

beneficial for learning towalk. Here,we used a simulated bipedal robot as an embodied

model to test the optimal penalty for errors in learning to walk. We trained the robot

to walk using 12,500 independent simulations on walking paths produced by infants

during free play and systematically varied the penalty for falling—a level of precision,

control, andmagnitude impossiblewith real infants.When trainedwith lower penalties

for falling, the robot learned to walk farther and better on familiar, trained paths and

better generalized its learning tonovel, untrainedpaths. Indeed, zeropenalty for errors

led to the best performance for both learning and generalization. Moreover, the bene-

ficial effects of a low penalty were stronger for generalization than for learning. Robot

simulations corroborate prior behavioral data and suggest that a lowpenalty for errors

helps infants learn foundational skills (e.g., walking, talking, and social interactions) that

require immense flexibility, creativity, and adaptability.
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Research Highlights

∙ During infant skill acquisition, errors are commonplace but appear to incur a low

penalty; when learning to walk, for example, falls are frequent but trivial.

∙ To test the optimal penalty for errors,we trained a simulated robot towalk using real

infant paths and systematically manipulated the penalty for falling.

∙ Lower penalties in training led to better performance on familiar, trained paths and

on novel untrained paths, and zero penalty wasmost beneficial.
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∙ Benefits of a lowpenaltywere stronger foruntrained than for trainedpaths, suggest-

ing that discounting errors facilitates acquiring skills that require immense flexibility

and generalization.

1 INTRODUCTION

What is the role of errors in learning? Commonsense beliefs, educa-

tional dogma, a long history of learning research, and modern artificial

intelligence (AI) assume that errors signal the need for skill improve-

ment and therefore inform learning (e.g., Ferris & Roberts, 2001;

Kaelbling et al., 1996; Rescorla &Wagner, 1972). Presumably, a salient

penalty for errors (i.e., negative feedback, or in AI lingo, “negative

reward”) promotes learning by highlighting undesired behaviors and

incentivizing correction of prior mistakes. This process is common in

learning highly structured, formal skills. For example, in math learning,

teachers and parents typically provide children with clear examples as

training input and explicit negative feedback for incorrect solutions.

Children then repeat the same operations with the goal of eliminating

errors and minimizing negative feedback. Likewise, in reinforcement

learning in AI and computational modeling, negative reward—negative

feedback for errors—is critical for learning (Kaelbling et al., 1996).

In contrast to formal skills such as math, foundational skills—

walking, talking, social interactions, and so on—require immense flex-

ibility, creativity, and adaptability to cope with the flux of everyday

situations. From prior work, it is clear that infants do not learn founda-

tional skills through structured training regimens with clear exemplars

as training input as in math learning. Instead, learning foundational

skills entails massive amounts of variable, time-distributed practice

(Herzberg, Fletcher et al., 2022; Smith et al., 2018; Herzberg, Shilling

et al., 2022). For example, when learning to walk, infants take thou-

sands of steps per hour punctuated by frequent starts and stops. Most

bouts contain steps in every direction (forward, backward, and side-

ways) and babies’ paths are curved and winding (Adolph et al., 2012;

Lee et al., 2018). Formal modeling with simulated robots shows that

the variable training input that results fromeveryday activities leads to

better learning than structured training on uniform, straight paths or

on repetitive circular or square paths (Ossmy et al., 2018). But in addi-

tion to variability, infants’ everyday training input also generates many

mistakes. What role do errors play in infants’ learning of foundational

skills?

Behavioral data suggest that infants’ naturalwalking regimenentails

a low penalty for errors. Falling—an error in walking—is frequent dur-

ing infants’ natural activity, but falls appear to incur a negligible penalty.

Walking infants fall 17 times per hour (Adolph et al., 2012). However,

after falling, infants rarely cry, and caregivers rarely show concern, and

infants return to play within two seconds (Han &Adolph, 2021). More-

over, infants are not deterred from walking: They move just as much

before and after a fall and they do not avoid the objects or locations

that were implicated in their falls.

In contrast to adults (especially older adults), infants may be “built”

to fall (Han & Adolph, 2021), so the penalty for errors is naturally

“discounted.” Infants are short and low to the ground (short distance

to impact), light weight (small mass at impact), and move slowly (low

impact velocity). Therefore, an infant fall generates 18 times less

potential energy than if infants were adult-sized and walked at adult

speeds. Moreover, when infants lose balance, they quickly display a

suite of a reactive behaviors that mitigate impact forces: They take

quick reactive steps to maintain upright posture, grasp nearby furni-

ture to slow the speed of falling, bend their knees during landing to

reduce the impact, and outstretch their hands to break the fall. Infants

mostly fall onto “padded” body parts such as hands, legs, and buttocks.

Sensitive body parts such as the head and torso rarely impact the floor,

and such impacts occur after “safer” body parts have already miti-

gated impact forces. The impact energy is further absorbed by infants’

body fat and muscles such that the residual energy is rarely sufficient

to break infants’ malleable bones (Butte et al., 2000; Currey, 1979).

Moreover, despite the high frequency of falls during infants’ everyday

activity, fall-related injuries are limited to a small proportion of infants

(3%) primarily due to falling froma largeheight (e.g., off a balcony, down

stairs; American Academy of Pediatrics, 2001; Borse et al., 2008; Lal-

lier et al., 1999). Indeed, across toddlers’ entire history of locomotion,

most parents report that their infants never incurred a serious fall that

left amark, bruise, or cut orwarranted a call to a doctor (Han&Adolph,

2021).

Although behavioral data suggest that infant falls are trivial, it can-

not reveal whether a low penalty for error is optimal for learning

foundational skills such aswalking. One possibility is that infants’ natu-

ral training regimen—with a low, negligible penalty for errors—is most

beneficial for learning because infants are not discouraged from prac-

ticing their new skills. An alternative possibility is that a higher penalty

for errors leads to better, faster learning by highlighting the causes

of errors or by incentivizing faster reduction of errors. The ideal test

of these possibilities would entail multiple training instances with a

“standard” baby—as if that baby could learn to walk under one penalty

condition and then start afresh under another penalty condition, with

no carryover between conditions. Of course, such a test is impossible

with real babies, but it is possible with robot simulations. A simulated

robot can have a constant setting at the start of each training regi-

men such that each training instance canbe independent andunrelated

factors can be controlled.

Although both infancy and AI researchers are interested in devel-

oping systems that produce functional behavior, the two disciplines

rarely capitalize on their complementary expertise, and relatively few

studies have used the computational power of AI to test hypotheses in
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developmental science. The current study builds on previous research

that used soccer-playing simulated robots to test the role of variable

input in learning to walk (Ossmy et al., 2018). The prior work showed

the feasibility and profitability of using simulated robots to test manip-

ulations that are practically or ethically impossible with infants and

children.

2 CURRENT STUDY

We used robot simulations to test the effects of different penalties

for errors on learning to walk. To retain maximal ecological valid-

ity in training, we conducted each simulation on one of five walking

“paths” produced by actual infants during free play. Most critical, dur-

ing training on the assigned path, each simulation was paired with

one of five penalty conditions, ranging from zero penalty to 100 times

the standard penalty. Then we evaluated the robot’s walking perfor-

mance on one of five tests—the trained path (to test learning) or on

one of the four untrained paths (to test generalization). We repeated

100 independent training simulations for eachof125path/penalty/test

combinations (5 training paths × 5 penalty conditions × 5 tests) result-

ing in 12,500 independent simulated robot regimens in total—a level

of precision, control, andmagnitude that would be impossible with real

infants.

Our outcome measures of walking performance were how far the

robot walked and howwell it walked in a 1-h test. Our primary hypoth-

esis was that infants’ natural learning input—where falling is trivial and

has little impact on infants’ subsequent activity—is a beneficial train-

ing regimen for flexible, functional walking. Thus, we predicted that the

lower the penalty during training, the better the simulated robotwould

perform at test on both trained and untrained paths and that zero

penalty would be most conducive for learning to walk. We also tested

whether a lower penalty during training is more beneficial for learn-

ing to walk on trained versus untrained paths. If the effect of a lower

penalty is stronger for trained paths, it would suggest that the benefits

of low-penalty errors in training are specific to the initial training input.

If the effect of a lower penalty is stronger for untrained paths, it would

suggest that a low penalty for errors promotes generalization and flex-

ibility of walking skill. Finally, based on prior robot simulations showing

that varied training input is the most beneficial training regimen for

learning to walk (Ossmy et al., 2018), we explored how changing the

penalty for errors affects learning to walk in the context of more and

less varied infant walking paths.

3 METHODS

3.1 Infant walking trajectories

We used the walking trajectories of 75 15-month-old infants (40

girls, 35 boys) during 20 min of free play in a large (6 m × 9 m)

laboratory play room (Figure 1a) as in Ossmy et al. (2018). Fami-

lies were recruited from the New York City area. All infants were

born at term with no known disabilities. Parents reported infants’

race and ethnicity as White (57.3%), Black (4.0%), Asian (6.7%), mul-

tiple races (22.7%), other (2.7%), or not reported (6.7%); 16% were

Hispanic.

Walking trajectorieswere recorded from a fixed overhead view that

captured the entire playroom. To define the trajectories, we first iden-

tified the timing of walking bouts with Datavyu (datavyu.org), a video

coding software that time locks user-defined annotations to the rel-

evant video frames. A primary coder scored the onset and offset of

each walking bout and the number of steps per bout (as in Lee et al.,

2018). A second coder independently scored 25% of each session to

assess inter-observer agreement: rs > 0.96, ps < 0.001 for number of

bouts, bout duration, and number of steps per bout. To define the shape

of each trajectory and the angle between consecutive steps, the pri-

mary coder used Matlab software (DLTDataViewer digitizing tool) to

manually digitize the location of each left-foot step using the overhead

camera view that recorded the entire playroom. If an infant’s foot was

momentarily occluded, the coder estimated the location based on the

preceding and following steps. We used the xy coordinates of these

points to map the paths into the configuration of the playroom (adjust-

ing for lens and perspective distortion). Using known distances, we

verified that the digitizing method returned <1% error per bout. See

an exemplar video clip of an infant free play session and the digitized

walking trajectory at databrary.org/volume/1552/slot/63238.

To test the effects of penalty for falling on more and less varied

infant walking trajectories, we created 5 groups of 15 infants using a

k-means clustering algorithm with k = 5 (Spath, 1985). Clusters were

based on variation in four aspects of infant walking as in Ossmy et al.

(2018)—bout shape (curved or straight), step direction (angle of each

step in 360◦), bout length (steps per bout), and number of bouts (starts

and stops). We calculated variation in bout shape as the standard error

of bout curvature for bouts of ≥4 steps; we calculated bout curvature

by averaging the overall bout curvature (the shortest distance between

the start and end points of the bout divided by the total distance trav-

eled) and step-to-step curvature (calculated the same way from each

series of 3 points in the bout). We calculated variation in step direction

for bouts of ≥2 steps based on the standard error of the change in

degrees of the plane angle between each pair of steps. We calculated

variation in bout length as the standard error of the number of infant

steps per walking bout. Finally, we calculated number of bouts as the

total number of stops.

3.2 Robot training paths

Following the cluster analyses, we created 5 robot training paths using

thewalking trajectories of the 15 infants in each group. For each infant

session,we first excludedall the timebetweenboutswhen infantswere

not walking. From the remaining walking time, we randomly sampled a

4-min block of consecutivewalking. Although infants often stopped for

long periods between bouts, the robots were fully stabilized after 2 s,

so longer pauses had no additional value for robot training. Thus, we

inserted uniform stationary periods of 2 s between each infant bout.
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F IGURE 1 Study design. (a) Layout of the laboratory playroom. Blue line depicts an example path generated by a walking infant during 20min
of free play. (b) Five robot training paths based on concatenated walking trajectories generated by 75 infants during free play. Infants’ walking
trajectories were clustered into five groups based on trajectory features—variations in bout shape, step direction, bout length, and number of
bouts. Top panel: exemplar segment from each robot training path (colored lines= path trajectory, dashes= stride length from left foot to left foot,
black dots= stops). Bottom panel: relative combinations of features for each training path. Values are scaled from theminimum to themaximum
across paths. (c) Simulated robot modeled after an Aldebaran Nao real robot.

(A few infants had less than 4 min of accumulated walking duration, so

their paths were repeated until 4 min accumulated.) Finally, we con-

catenated the randomly sampled 4-min blocks from each of the 15

infants to create a 1-h training path (a realistic duration for training

in terms of computational time complexity). Therefore, the concate-

nated training paths represented the combination of dimensions in

each group of infant walking trajectories. Figure 1b (horizontal bars)

shows the relative dimensions of the five concatenated training paths,

distinguished by color. For example, the green training path was char-

acterized by high variation in step direction, high number of bouts,

and low variation in bout shape, and relatively low variation in bout

length. The purple training path had relatively high variation along all

dimensions. Figure 1b (path shapes) depicts exemplar portions of each

training path.

We took the coordinates of each concatenated training path and

mapped the start, stop, and shape of the walking bouts onto the

robot walking field where each grid space is 1 m2× 1m2. During

training, the simulated robot walked sequentially to each destina-

tion specified by the concatenated infant paths. When the infant

stopped walking, the robot also stopped walking and stood in

place.

3.3 Robot simulations

The robot simulation was conducted in SimSpark, the simulator used

in the RoboCup soccer 3D-simulation league competitions. The simu-

lated robot was loosely modeled after the Aldebaran Nao real robot

(www.aldebaran-robotics.com)with a height of 57 cm, amass of 4.5 kg,

and 22 degrees of freedom (six in each leg, four in each arm, and two in

the neck); see Figure 1c. The simulated robot had proprioception of all

joints, pressure sensors on its feet, two gyrometers, and an accelerom-

eter. The joint preceptors andeffectors enabledmonitoring andcontrol

of the hinge joints. Joint effectors allowed the robot to specify the

torque and direction in which tomove.

We used a similar, open source, parameterized robot walk engine as

in previous work (MacAlpine et al., 2012; MacAlpine & Stone, 2016;

Ossmy et al., 2018) that first selects a path for the torso to follow,

and then determines where the feet should be with respect to the

torso location. Thewalk enginewas parameterized usingmore than 40

parameters that specify the manner of robot walking, such as the max-

imum height of the foot from ground, maximum step size, and duration

of a single step (Table 1). The parameters of the walk engine were ini-

tializedbasedonprevious testing on theNao real robot. SeeMacAlpine
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TABLE 1 Parameters of the walk engine that are optimized during
learning. For full details, seeMacAlpine et al. (2012).

Parameter

Maximum size of steps (radians)

Maximum size of steps for x coordinates (mm)

Maximum size of steps for y coordinates (mm)

Howmuch center of mass is shifted from side to side (mm)

Height of the torso from ground (mm)

Maximum height of foot from ground during step (mm)

Fraction of a phase the swing foot remains still beforemoving

Fraction of a phase that the swing foot on the ground before lifting

Duration of single step (seconds)

Expected difference between commanded COMand sensed COM

Factor of how fast the step sizes change per time cycle

MaximumCOMerror before the steps are slowed (mm)

MaximumCOMerror before all velocity reach 0 (mm)

Constant offset between the torso and feet (mm)

Factor of the step size applied to the forwards position of the torso

Fraction of a phase that the swing foot spends in the air

Angle of foot when it hits the ground (radians)

Proportional controller values for the torso angles—tilt

Proportional controller values for the torso angles—roll

Proportional controller values for controlling COM (x)

Proportional controller values for controlling COM (y)

Proportional controller values for controlling COM (z)

Proportional controller values for moving arms (x)

Proportional controller values for moving arms (y)

et al. (2012) for a full description of the technical and mathematical

details of the walk engine.

3.4 Optimization procedure and reward structure

Before training, the robot could walk very slowly with the initial set

of walking parameters. Based on the positive and negative rewards

received during training, the robot learned to repeat or avoid repeating

certain actions by optimizing the set ofwalking parameters as itwalked

toward a series of destinations (goToTarget optimization; MacAlpine

et al., 2012; Ossmy et al., 2018) that followed the concatenated infant

path. Because it was impractical to optimize more than 40 parame-

ters, we selected a subset of 24 parameters, based on their impact

on the speed and stability during previous testing with the Nao real

robot (Table 1; seeMacAlpine et al., 2012 andOssmy et al., 2018). Over

the course of the optimization, the robot learned to walk increasingly

faster with fewer errors.

Over the training, the robot optimized the walking parameters

to maximize the net rewards—the sum of the positive and negative

rewards forwalking todestinationsminus thepenalty (additional nega-

tive rewards) for falling. The robot received positive rewards based on

the distance traveled toward the destination (according to the infant

path). If the robot reached a destination ahead of time (faster than

the time it took the infant to reach that destination—capped at 7 s),

it received extra rewards based on the distance it could have traveled

given the remaining time. If the robot reached a destination with a

slower time than it took the infant to reach that destination, it received

fewer positive rewards (note, falls interrupt walking and thus caused

slower robot walk times). Training also included “stop destinations,”

so the robot received negative rewards for overshooting the desti-

nation. For full equations describing the robot reward structure, see

MacAlpine et al. (2012).

3.5 Penalty for falls

The optimization procedure and reward structure for the robot simu-

lations were identical to MacAlpine et al. (2012); the only difference

was the penalty value for falling during training. A critical part of our

training procedure—that differed from MacAlpine et al (2012)—was

that the robot simulations received different penalties (i.e., varying

negative rewards) after falling during the optimization run. Wemanip-

ulated the value of the penalty to test the role of errors in learning

to walk. We used five penalty values based on the standard penalty

value used in prior work (MacAlpine et al., 2012; Urieli et al., 2011):

0 (no penalty at all), 2.5 (half the standard penalty), 5 (standard

penalty), 10 (double the standard penalty), and 500 (100 times the

standard penalty). High penalty for error should lead the robot to

avoid certain movements whereas low penalty for error should have

minor or no influence on the learning procedure because it does

not posit any constraint on the movement in subsequent training

iterations.

3.6 Learning outcome measures

To evaluate the training success for each penalty value, we tested 100

independent simulations on the robot’s own training path (i.e., learning)

and 100 independent simulations on each of the four untrained paths

(i.e., generalization) for 1 h. We used two outcome measures: how far

the robot walked during each 1-h test (total distance in meters); and

how well the robot walked during the 1-h test—measured by the per-

cent improvement in the robot’s “fitness” score after training relative

to the fitness score if the robot had not been trained at all (that is,

withnoparameter optimization; seeMacAlpineet al., 2012;Urieli et al.,

2011). Fitness scores for evaluation were computed as the sum of all

thepositive andnegative rewards forwalkingaccording todestinations

minus the standardpenalty for fallingduring thepost-training testwalk

(see full details about the fitness score in MacAlpine et al., 2012). That

is, the fitness score was the net reward with the standard penalty for

falling.
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F IGURE 2 Effects of penalty on learning and generalization. (a)When tested on the trained path, robot simulations with a low penalty for
falling travelled farther (top panel) and had greater improvement in fitness (bottom panel) relative to training with a high penalty for falling. (b)
When tested on a novel, untrained path, robot simulations with a low penalty for falling traveled farther (top panel) and had greater improvement
in fitness (bottom panel) relative to training with a high penalty for falling. Each symbol in (a) represents the average walking performance across
100 simulations of robot trained on the same infant path. Each symbol in (b) represents the average walking performance across 400 robot
simulations trained on the same infant path (100 simulations tested on each of the four untrained paths).For example, 400 robot simulations
trained on infant path 1were tested on infant paths 2, 3, 4, and 5with 100 simulations for each path. Symbol color denotes training path. Black
lines denotemeans across paths.

4 RESULTS

4.1 Lower penalties led to better learning

Overall, lower penalties led to better learning—that is, better perfor-

mance on the trained test path (identical to the robot’s training path).

Regardless of the training path, the robot walked farthest when it was

trained with zero penalty for error compared to any non-zero penalty

for error (Figure 2a, top panel). A 5 (penalty values)× 5 (training paths)

ANOVA confirmed a main effect of penalty on distance walked, F(4,

2475)= 8.63, p< 0.01, amain effect of training path, F(4, 2475)= 3.44,

p < 0.01, but no interaction between penalty and training path, F(16,

2475) = 1.02, p = 0.42. Sidak-corrected post-hoc tests on penalty

showed that the robot walked farther when trained with zero penalty

compared to all other penalties, ps < 0.05, and it walked for shorter

distances when trained with 100 times the standard penalties com-

pared to all other penalties, ps < 0.01. Sidak-corrected post-hoc tests

on training path showed that the robot walked for shorter distances

when trained on the least varied green path than the more varied red

and blue paths, ps< 0.05.

Similarly, lower penalties led to better quality of walking. Regard-

less of training paths, the robot had the highest percent improvement

in fitness scores when trained with zero penalty for error compared to

any non-zero penalty for error (Figure 2a, bottom panel). A 5 (penalty

values) × 5 (training paths) ANOVA confirmed a main effect of penalty

on fitness scores, F(4, 2475) = 4.21, p < 0.01, a main effect of training
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path, F(4, 2475) = 2.87, p < 0.03, but no interaction between penalty

and training path, F(16, 2475) = .84, p = 0.62. Sidak-corrected post-

hoc tests on penalty showed that the robot had higher improvement

in fitness scores when trained with zero penalty compared to all other

penalties, ps < 0.01, and it had lower improvement in fitness scores

when trained with 100 times the standard penalty compared to all

other penalties, ps < 0.001. Sidak-corrected post-hoc tests on training

paths showed that the robot had lower improvement in fitness scores

when trained on the least varied green path compared to the most

varied purple path, p< 0.04.

4.2 Lower penalties led to greater generalization

As in the trained test path, a lower penalty for error improved robot

walking in untrained test paths (different from the robot’s training

path). Figure 2b shows that decreasing the penalty improved walk-

ing distance (top panel) and fitness score (bottom panel). When the

robot was trained with zero penalty, it walked farthest and displayed

greatest improvement in fitness scores. ANOVAs with 5 (penalty val-

ues) × 5 (training paths) on distance and fitness confirmed a significant

effect of penalty, Fs(4, 9975)> 6.29, ps< 0.01, no effect of infant path,

Fs(4, 9975) < 1.78, ps > .13, and no interactions, Fs(16, 9975) < 1.53,

ps> .14. Sidak-correctedpost-hoc tests ondistance and fitness showed

that training with zero penalty led to better performance compared to

training with all other penalties, and training with 100 times the stan-

dard penalty led to worse performance compared to training with all

other penalties, ps<0.01. In addition, the half penalty and the standard

penalty conditions led to better performance compared to training

with the double penalty, ps< 0.04.

4.3 Lower penalties were more beneficial for
generalization than for learning

Moreover, we found that lower penalties for error had a more pro-

nounced effect on generalization (i.e., when robots were tested on a

different path than their training path) than on learning (i.e., when

robots were tested on the same path as their training path). To test

whether lowering the penalty for errors was more beneficial for learn-

ing or generalization, we compared the difference in performance

between robots trained with each pair of penalty values. Thus, we

subtracted the robot’swalkingperformance (total distanceor improve-

ment in fitness) with higher penalty from that of lower penalty for

trained and untrained paths. As shown in Figure 3, the average dif-

ferences in walking performance (lower penalty minus higher penalty)

were positive in all trained anduntrained tests (all above zero in figure),

indicating that a lower penalty resulted in better walking performance

than a higher penalty for both trained and untrained test paths. Criti-

cally, the differences in walking distance were significantly higher for

untrained paths than trained paths for 8 of 10 test pairs (gray regions

in Figure 3a), ts(23) > 2.31, p < 0.03. Likewise, the differences in fit-

ness score improvement were higher for untrained paths than trained

paths for 8 of 10 test pairs (gray regions in Figure 3b), ts(23) > 1.93,

ps< 0.05.

5 DISCUSSION

We used a simulated robot as an embodied model to test the optimal

penalty for errors in learning to walk. We systematically manipulated

the penalty for falling and assessed the influence on learning and gen-

eralization. Lower penalties improved robot walking performance for

both familiar, trainedwalking paths and novel, untrainedwalking paths.

And zero penalty was most conducive for learning and generalization.

Moreover, a low penalty during training was especially beneficial when

the robot had to generalize its learning to novel paths. Taken together,

our findings suggest that low (or zero) penalty for errors is beneficial

for learning foundational, flexible skills like walking.

5.1 Low penalty for errors facilitates learning
foundational skills

Why might a foundational skill like walking benefit from a low penalty

for error? In contrast to more formal, structured skills such as math

computations, foundational skills likewalking require tremendous flex-

ibility, creativity, and adaptability to cope with the everchanging flux

of everyday situations (Adolph & Hoch, 2019). Because there is no

fixed solution or formula for learning to walk—walkers must adjust

their gait patterns on the flywhenwearing different footwear, carrying

varied objects, or walking over different ground surfaces—it requires

an immense amount of varied practice to be flexible and generative.

Accordingly, we propose that a low penalty for errors ensures that

infants maintain high motivation to practice such that errors won’t

shut down the learning system. Indeed, after falling in free play, infants

return to the same level of activity they exhibited prior to the fall—they

continue to walk as much after a fall as before the fall and they return

to play with the objects and locations that were implicated in the fall

moments earlier (Han &Adolph, 2021).

Moreover, a low penalty for error may motivate infants to engage

in new, challenging, creative activities. Because the penalty for falling

is low, infants can continuously push the boundaries of their current

skill repertoire (Han et al., 2021). As a result, infants spontaneously

try new things. For example, as soon as infants can walk on the floor,

they try to run, spin, andwalk up and down elevations. Of course, these

new skills incur more falls, but the benefits far outweigh the costs. In

contrast, in academic settings, students’ perceived “costs” are associ-

ated with lower academic performance and higher intention to avoid

classroom engagement (Jiang et al., 2020). Likewise, students’ antici-

pation of negative social consequences predicts less creative behaviors

(Ivcevic &Hoffmann, 2021).

Nonetheless, a low penalty for errors does not preclude the pos-

sibility that infants learn from errors. Repeated errors in a uniform

environment can inform infants’ future actions. For example, after

falling repeatedly into a squishy, visually marked foam pit, infants

 14677687, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/desc.13449, W

iley O
nline L

ibrary on [26/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 of 10 OSSMY ET AL.

F IGURE 3 Stronger effects of penalty on generalization than learning. Graphs show all possible comparisons between penalty conditions
(lower penalty minus higher penalty) for (a) walking distance and (b) improvement in fitness scores. Horizontal dashed lines represent 0 difference.
Positive values indicate the lower penalty wasmore beneficial than the higher penalty. For each comparison, left plot (blue) shows trained path and
right plot (red) shows untrained path. Each symbol denotes one combination of training and testing for 100 robot training simulations. Gray
regions and asterisks denote significant differences between trained and untrained test paths.

learned to associate the appearance of the foam pit with the conse-

quences for locomotion. They increased exploratory touching of the

foam pit, showed longer latency before crossing, and avoided the pit

or used alternative strategies to cross (Han, et al., in press). However,

learning fixed associations between an environmental stimulus and

falling is not conducive for learning to walk in the real world (Adolph &

Joh, 2009). Outside the confines of a structured laboratory task, most

infant falls are due to “internal” causes—weak legs or poor upright bal-

ance control (legs collapse or infants lose balance when turning their

head or lifting an arm while standing) or motor execution (trip over

their own feet while walking or running)—all in different environmen-

tal contexts (Han, et al., 2021). Thus, if infants associated the causes of

falls with a moderately high penalty, they would never learn to stand,

turn their head, lift their arm, or walk or run. If they associated such

internally generated falls with the features of the environment where

the fall occurred, they would never want to walk at all.

5.2 A low penalty for errors reinforces the
benefits of a varied training regimen

Previous work shows that a more varied training regimen facilitates

skill generalization (Ossmy et al., 2018). Simulated robots trained with

real, varied infant paths outperformed robots trained on uniform, geo-

metrically shaped paths (straight lines, circles, and squares) in robot

soccer—a testing scenario that requires high flexibility in walking skills

to cope with a continually changing environment. And robots trained

on more varied infant paths outperformed robots trained on less var-

ied infant paths. In the current study, we found consistent evidence

that more varied infant paths (e.g., purple and red paths) are more

beneficial for training than less varied infant paths (e.g., green path),

regardless of the penalty values and testing environments. Critically,

the current study took these findings one step further:We found that a

varied training regimen accompanied by a low penalty for errors facil-

itates learning and generalization, whereas a high penalty for falling

undermines the benefits of a varied training regimen.

Of course, infants’ real-world learning environments encompass a

more diverse array of penalties for errors compared to the uniform

penalties used in this study. When infants learn to walk, the penalties

for errors—here, infant falling—can be conceptualized as a “pyramid of

pain” (Han&Adolph, 2021).Most infant falls are at thebaseof thepyra-

mid.More than 90%of infants’ falls are unremarkable and unimpactful,

less than 10% of falls instigate infant fussiness and caregiver concern

in the moment. In the middle portion of the pyramid, only 30% of

infants experiencememorable falls that are remembered by caregivers

months later. Falls at the top of the pyramid are even more rare: 3% of

infants have falls that require medical attention, and the dire statistics

of fatal infant falls is limited to 0.0003% of infants (Borse et al., 2008).

This study focused on understanding the impact of the over-

whelmingly low-penalty errors on learning and generalization. Future

studies should consider the variability of error penalties and examine

how changes in penalties during the learning process (e.g., increases

and decreases in penalty value) affect skill acquisition and gen-

eralization. Potentially, such a manipulation would offer a more
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nuanced understanding of the effects of penalty on learning and

generalization.

6 CONCLUSIONS

What is the role of errors in learning? When learning foundational

skills such as walking, robot simulations indicate that a low penalty

for errors—perhaps no penalty at all—is most conducive for learning

and generalization. Accordingly, we propose that infancy is an ideal

period for learning flexible, creative, adaptive skills. Infancy naturally

confers varied input for learning. Infants acquire foundational skills

in a changing body with changing skills in a changing environment

(Adolph & Hoch, 2019; Adolph et al., 2018; Adolph & Robinson, 2015).

Thus, the natural variety in infant development ensures that infants

will not learn “static facts” but rather generalize their skills to varied

body-environment relations (Adolph & Joh, 2009). Moreover, infants’

everyday errors typically incur a low penalty—falls are unimpactful,

social gaffes are trivial, and grammatical errors and disfluencies in

speech receive no explicit correction and do not impede communi-

cation (e.g., Bohannon & Stanowicz, 1988). Due to a confluence of

factors—infants’ unique body characteristics, protected environments,

and social scaffolding from their caregivers—these features of the

learning environment are exclusively available during infancy. At later

stages, higher physical and social penalties can impede skill acquisition

such as learning to ski or to speak a second language.
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